




I ndex

Masthead

Editor's Letter

Production Colophon

New Releases

Upcoming Events

Copyleft Business Dave Crossland

The heritage of our pixels Eric Schrijver

Coding Pictures Ricardo Lafuente

Setting a book with Scribus Pierre Marchand

Best of svg

Desktop Pierros Papadeas

Interview with Oxygen's Nuno Pinheiro

Showcase

Allison Moore Papercut

Antonio Roberts What Revolution?

Making your workflow work for you Seth Kenlon

On being a Unicorn: the case for user-involvement in Free/Libre
Open Source Software Libre Graphics Meeting Special

Talking about our tools Libre Graphics Meeting Special

AdaptableGimp: user interfaces for users ginger coons

Resource List

Glossary 1.2

4

6

7

9

10

12

14

18

22

24

26

28

35

36

38

40

43

44

46

51

55



LIBRE GRAPH ICS MAGAZINE 1 .2
4

Masthead

Editorial Team
Ana Carvalho ana@manufacturaindependente.org

ginger coons ginger@adaptstudio.ca

Ricardo Lafuente ricardo@manufacturaindependente.org

Publisher
ginger coons

Administrative Partner
Studio XX http://studioxx.org

Community Board
Dave Crossland

Louis Desjardins

Aymeric Mansoux

Alexandre Prokoudine

Femke Snelting

Contributors
Dave Crossland, Seth Kenlon, Pierre Marchand, Al l ison Moore,

Pierros Papadeas, Nuno Pinheiro, Antonio Roberts, Eric

Schri jver.

Printed in Montréal by Mardigrafe on recycled paper.

http://mardigrafe.com

Licensed under a Creative Commons Attribution-Share Al ike

l icense (CC-BY-SA). Al l content should be attributed to its

individual author. Al l content without a stated author can be

credited to Libre Graphics Magazine.

Contacts
Write us at enquiries@libregraphicsmag.com

http://libregraphicsmag.com

MASTHEAD

Images under other licenses

Signs in “Best of SVG” are al l in the Publ ic Domain. They can be found in:

http://commons.wikimedia.org/wiki/Fi le:UK_motorway_matrix_fog_nuvola.svg

http://commons.wikimedia.org/wiki/Fi le:Ohituskielto_p%C3%A4%C3%A4ttyy_352.svg

http://commons.wikimedia.org/wiki/Fi le:Norwegian-road-sign-406.0.svg

http://commons.wikimedia.org/wiki/Fi le:Raitiovaunun_pys%C3%A4kki_533.svg

http://commons.wikimedia.org/wiki/Fi le:K%C3%A4velykatu_575.svg

http://commons.wikimedia.org/wiki/Fi le:Zeichen_238.svg

http://commons.wikimedia.org/wiki/Fi le:Laser-symbol .svg

http://commons.wikimedia.org/wiki/Fi le:PN_Pcha%C4%87,_aby_otworzy%C4%87.svg

http://commons.wikimedia.org/wiki/Fi le:GHS-pictogram-explos.svg

Blender screenshot in “Resources” byWikipedia user DingTo. GNU General Publ ic License.
http://en.wikipedia.org/wiki/Fi le:Blender3D_2.4.5-screen.jpg

General

Advertisements, with the exception of those representing Libre Graphics Magazine, are not
necessari ly covered by the blanket CC BY-SA license. I t is best to check with the projects
they represent before reusing them.

A Reader's Guide to Libre Graphics Magazine

In this magazine, you may find concepts, words, ideas and
things which are new to you. Good. That means your horizons
are expanding. The problem with that, of course, is that
sometimes, things with steep learning curves are less fun than
those without.

That's why we're trying to flatten the learning curve. If, while
reading Libre Graphics magazine, you encounter an unfamiliar
word, project name, whatever it may be, chances are good
there's an explanation.

At the back of this magazine, you'll find a glossary and resource
list. The glossary aims to define words that are unique to the
world of Libre Graphics. The resource list provides valuable
information about tools, licenses, whatever items we may be
mentioning.

Practically, this means that if, for example, you're reading an
article about Scribus (see pages 22 to 23), you can always flip to
the back of the magazine, look up Scribus in the resource list
and become quickly informed about it. This provides some
instant gratification, giving you the resources you need to
understand, in a moment, just what we're talking about.

We hope you like our system.

Images under a CC Attribution Share-Alike license

Cover, inside cover, index and showcase separator page i l lustrations by Manufactura
Independente based on images by Fl ickr user fdctsevi l la.

Photo of ginger coons by herself.

Photo of Ricardo Lafuente by Ana Carvalho.

Photo of Ana Carvalho by Luís Camanho.

Photo of Dave Crossland by Mary Crossland.

Photo of Eric Schri jver by himself.

I l lustrations in “Coding pictures” by Joana Estrela, Lídia Malho, Telmo Parreira, Sofia
Rocha e Si lva, Fábio Santos, Edgar Sprecher.

I l lustration in “Setting a book with Scribus” by Manufactura Independente based on “Book
8” by Fl ickr user brenda-starr.

Signs in “Best of SVG” byWikimedia Commons.

Screenshots in “Desktop” by Pierros Papadeas.

Photos in “Interview with Oxygen's Nuno Pinheiro” by Manufactura Independente.

Icons and wal lpaper in “Interview with Oxygen's Nuno Pinheiro” by the Oxygen project.

Photos in “AdaptableGimp: user interfaces for users” by ginger coons.

Screenshots in “AdaptableGimp: user interfaces for users” by Ben Lafreniere.

Al l images in the Showcase section can be attributed to the creators mentioned therein. Al l
are l icensed CC BY-SA.

GIMP, Inkscape, Kdenl ive, MyPaint, Scribus and Web Font Downloader screenshots in
“Resources” by Manufactura Independente.





LIBRE GRAPH ICS MAGAZINE 1 .2
6

Getting used to misuse
ginger coons

EDITOR'S LETTER

Use cases, at their core, are about the way users proceed
through a system in order to achieve an outcome. Normally,
there are lots of diagrams and small details involved in creating
a use case. But we're not here to go over technical detail.
Instead, we're here to talk about that core, the idea of looking at
paths of use and interaction.

Then there are affordances, the features of a thing, its
possibilities, the ways in which it might come to be used.

Clearly, then, we're talking about the way things are used and,
more specifically, the way things are designed to be used.

As designers, artists, makers, builders, we make things that are
of use, in one way or another. At the same time, we make use of
the productions of others. We do both of those things on an
almost constant basis, in our lives, our vocations, our work.

A graphic designer may design a poster which serves the use of
informing viewers about that which it promotes. That same
designer uses a set of tools, however diverse, to fashion the
poster. Thus, the builder is built for. Both the poster and the
tools of the designer have affordances and potential use cases.
What, after all, is the proper use of a poster? Is it to be read? Is
it to be attractive? Is it to be taken off the wall and folded into a
paper airplane? To be stolen, only to be hung on another, more
private wall?

Our software tools, in their affordances and potential use cases,
define for us, to a certain extent, what we may and may not do.
Those decisions are put in place by the people who design the
tools. Together, as users, developers and all areas between the

two extremes, we boil in a constantly reconfiguring sea of use
possibilities, material and mental affordances.

Which is why, in issue 1.2 of Libre Graphics magazine, we're
looking at the interconnecting topics of use cases and
affordances. We can look at it from a technical perspective but,
perhaps more productively, we can also look at it
philosophically. It's about the idea of the affordances of the
work, who it's for, what it can do.

That applies both to the work designers do for others and also to
the work of others, as it is employed by designers.

Use, misuse and happy accidents are all areas we're keen to
discuss and explore in this issue. We look, this time around, at
glitch art, smart workflows, the history of the pixel and its
adoption, user interfaces designed to work for instead of against
you and any number of other exciting topics.

We hope you'll stick with us as we wander through the diverse
meanings ofwhat it is to use and be used.

ginger coons is a member ofthe Libre Graphics Magazine
editorial team.



LIBRE GRAPH ICS MAGAZINE 1 .2
7

Versions under control
Ana Carvalho & Ricardo Lafuente

PRODUCTION COLOPHON

When working on a project, it helps to have a proper workflow
set up, one which can help us do away with boring and
repetitive tasks through as much automation as possible. One of
the crucial parts in such a workflow is version control.

The most popular proprietary design software tools haven't yet
incorporated the latest improvements in version control — in
many cases it's totally absent from software suites and is usually
provided by third-party commercial plug-ins. The consequence
of this is that regular users are forced to adopt very crude ways
ofmanaging the versions of their work, usually with awkward
numbering and notes on the filenames themselves. Things like
“illustration7-final_version3-PRINT-FINAL-SRSLY_THIS_IS_IT-
final2.jpg” should be familiar to more than a few designers.

On the other hand, the Free/Libre and Open Source software
(f/loss) world is very much in touch with version control and
other project management strategies. These strategies quite
often come from the domain of software development. Thus, the
thought of using a version control system (vcs) for the
production of this magazine came up early. There is a wide
array of choice for this purpose. The most popular options are
Subversion, Git, Darcs, Bazaar and Mercurial. It should be said
that there's some heavy argument about which vcs is the best
and this discussion is nearing the status of a holy war. We
decided not to waste too much time weighing choices and
instead run with one and see how it fared — and Git was what
we stuck with.

Cliché as it might sound, version control is one of the things
that once you pick up, you can't figure out how you ever
managed to do without. Not only do we get a full log of every

change that has been made, using version control makes
collaborative work much more straightforward, giving us the
ability to always know what the status of our project is and, if
necessary, revert to older versions of any file without hassle.

Nevertheless, version control systems require some learning and
hand-holding to get comfortable with. Among all the technical
jargon — learning the meanings and effects of committing,
reverting, staging, branching, merging, rebasing, pruning,
annotating — we are slowly becoming familiar with this way of
working, and are definitely seeing the advantages.

PROPCOURIER 1.2

The ever-evolving typeface for this magazine, PropCourier Sans,
benefitted from some tweaks for issue 1.2. Most of the work
dealt with punctuation, softening the weight of the most used
punctuation glyphs. We also began working on kerning, the
headache of choice for type designers. In order to preserve our
neurons, we decided to kern as we go: after typesetting 1.2 , we
looked at printed proofs for the most glaring kerning problems
(as in “f/loss”) and fixed them. Each issue, we'll be adding more
kerning pairs as we find the need for them.



LIBRE GRAPH ICS MAGAZINE 1 .2
8



LIBRE GRAPH ICS MAGAZINE 1 .2
9NEW RELEASES

New releases

Reclaim your

tools
by Jakub Szypulka

http://vimeo.com/18568225

Documents the slow beauty and diversity of
activity to be found at even the most hectic
meeting of software contributors. In this
case, documenting Libre Graphics Meeting
2010. Made using Kdenlive and Audacity.

ArtistX 1 .0
http://www.artistx.org/site3

A version of gnu/Linux which bills itself as
able to turn a ‘common computer into a full
multimedia production studio.’ Based on
Ubuntu and designed for multimedia artists.

CrunchBang is version of gnu/Linux
notable for its community of users who
actively share screenshots of their
modifications to the desktop. They share not
only screenshots of their modifications, but
also instructions for replicating their results.

CrunchBang 10

Statler
http://crunchbanglinux.org

A new version of gimp, which allows users
to make easy customizations. Read more
about it on pages 46-50.

AdaptableGIMP
http://adaptablegimp.org

What's new with you?We're always eager to find outwhat designers,
artists and others using andworking with F/LOSS are up to.
Tell us whatyou've done lately atenquiries@libregraphicsmag.com



LIBRE GRAPH ICS MAGAZINE 1 .2
10

Upcoming events

UPCOMING EVENTS

Icograda

design week
VILN IUS

9-1 3

May

1 0-1 3

May

Libre Graphics

Meeting
MONTREAL

1 -3

APRIL

Flourish 2011
CH ICAGO

30 APRIL

1 May

Linux Fest

Northwest
BELLINGHAM , WASH INGTON

We're very pleased to
present a calendar of
upcoming events which
encompass all things
graphic design, media
art and F/LOSS. Given
that there are few events
which tackle all three
subjects, we aim to offer
you events where you
can be the agent of
change: the F/LOSS
designer at a traditional
design event, or maybe
the designer at a
predominantly software
developer event.

http://icograda.org/events/events/
calendar738.htm

http://libregraphicsmeeting.org/2011

http://flourishconf.com/2011 http://linuxfestnorthwest.org



LIBRE GRAPH ICS MAGAZINE 1 .2
1 1UPCOMING EVENTS

1 9-21

May

Typo Berlin
BERLIN

1 9-22

May

Live Performers

Meeting
ROME

Pica 2011
BANFF, ALBERTA

1 -3

May

agIdeas 2011:

International

design

research lab
MELBOURNE

2

May

7-21

May

CHI 2011
VANCOUVER

http://liveperformersmeeting.nethttp://typoberlin.de/2011

http://picaconference.ca http://agideas.net/agideas-2011/
design-research-lab

http://chi2011.org



LIBRE GRAPH ICS MAGAZINE 1 .2
12

Copyleft has a scary reputation among business people because
they often do not understand it.

Copyright is easy — it's about what restrictions and freedoms
you have to use and redistribute a work. Copyleft is a “pay it
forward” feature of copyright licenses that says if you
redistribute the work, you must pass it along on the same terms.
You are free to take a libre work and improve it. You can take it
as a part and combine it with your own parts to make a new,
and hopefully better, thing. What makes copyleft powerful —
and scary — is that if you choose to do this, the whole thing
must be libre. You can stand on the shoulders of others but
others can also stand on yours — or you can start from scratch
and set your own terms.

Copyleft has been smeared as “viral” and “a cancer” because
creators of proprietary software much prefer libre licenses
without this bargain. Those licenses allow people to have their
cake and eat it by exercising their freedom while denying others
that freedom. Including libre parts in a proprietary whole
defeats the original point of setting the work free, and copyleft
is a good defense against this abuse. Copyleft is central to the
most popular libre licenses for programs and creative works, in
the gnu gpl and the Creative Commons Attribution-ShareAlike
licenses respectively. Copyleft powers the explosive, exponential
growth of share-and-share-alike culture. And, as always, fonts
are special.

PostScript powered the early days of desktop publishing and it
required the redistribution of complete fonts with documents.
PostScript (ps) document files linked to font files. That was
intensely annoying for proprietary font vendors because fonts

Copyleft Business
Dave Crossland

TYPE DESIGN

were endlessly copied all without license fees being paid. Font
Digital Rignts Management (drm) schemes were cooked up over
the years and found to be more trouble than they were worth.
Being unable to print documents correctly is perhaps only
slightly less annoying for designers than having an application
crash and taking the work with it.

Pdf solved this by combining fonts with documents or, ideally,
the minimum parts of fonts needed for that particular document
to print reliably. (Scribus has had faultless pdf export as a top
priority since the beginning.) But this makes the story for
copyleft fonts complicated. A copyleft font may overreach into
the documents that use it, unless an exception is made to the
normal terms — an additional permission to allow people to
combine parts of a font with a document without affecting the
license of texts, photographs, illustrations and designs. Most
libre fonts today have such a copyleft license — the sil ofl or
gnu gpl with the Font Exception described in the gpl faq.

Web fonts return the world to linking documents to fonts. This
is extremely unfortunate for the proprietary business world
because people can see a font, like it, and figure out how to
download and save it without paying for a proprietary license.
It is, however, extremely fortunate for those doing business with
copyleft works, because copyleft distribution is a wealth
creation engine for those who know how to drive it. More
distribution means more money.

The business of libre fonts is open for designers who can take a
libre font and combine it with their own parts to make a custom
typeface design for their clients — customers who could not
afford to commission totally new typefaces, but who still desire



LIBRE GRAPH ICS MAGAZINE 1 .2
13TYPE DESIGN

fresh typographic identities. Since all businesses will want to
use their fonts on their websites, participation in free culture is
guaranteed by copyleft. If you see a great typeface on a web
page and it has a libre license, you can download and save it
and improve it further.

TheWeb Font Downloader Firefox Add-On delivers this dream,
making it easy to download libre web fonts. The next step,
improving the font further, highlights the issue of font sources.
OpenType has two flavours, one with PostScript-style cubic
outlines and the other with TrueType-style quadratic outlines.
The PostScript flavor is superior as a font format and looks
great on computers using FreeType and on Mac os x, but lacks
the pixel-level control ofTrueType needed to look good on most
Microsoft Windows computers. This means almost all web fonts
are distributed in a format that is a long way from “the
preferred form of the work for making modifications to it.” That
is the definition of source code in the gnu gpl, and it works
very well for programs. I hope one day it will be a tradition for
fonts too.

Get the Web Font Downloader Firefox Add-On now from
www.webfontdownload.org

The Web Font Downloader

Firefox Add-On del ivers the

dream, making it easy to

download l ibre web fonts.

Dave Crossland believes anyone can learn to design great fonts.
He is a type designer fascinated by the potential ofsoftware
freedom for graphic design, and runs workshops on type design
around the world.
http://understandingfonts.com



LIBRE GRAPH ICS MAGAZINE 1 .2
14

When JohnWhitney made his pioneering
computer art films as an artist in
residence for ibm in 1960, the computer
screen he used did not use pixels. Rather,
it was a single beam which could be
instructed to move across the screen,
much in the same way that postscript
instructions tell a vector to move.1

The graphics in Atari’s arcade games, like
Battlezone, were also drawn with vector
lines on an oscilloscope.2 In the long run,
a matrix of points became the preferred
method to describe screen output. And it
still is today. In fact, we have a more
rigid matrix now that we use lcd
displays: they have a “native” resolution

The heritage of

our pixels
Eric Schrijver

SCHRIJVER

determined by the number of pixel
elements — whereas the phosphor dots in
a color crt display bear no relation to
pixels or subpixels displayed on them.3

So, to get your digital resources out on a
computer screen, you have to describe
them as a matrix of points. That’s easiest

when you work with
data that itself is a
matrix of points. It’s
even easier when you
map the matrix of
points directly in the
data to the matrix of
the points on the
screen.

The easiest solution
is not the best, in this
case. Try to browse
the internet on a 24
inch screen and, by
default, it will look
rather awkward:

singular columns of 960 pixels, with huge

swaths of background image on either
side. That is because the layouts are
specified in css pixels and, by default, the
browser makes them correspond with
“device pixels”.4 Where this used to be a
predicament, now it’s just a convention.
All modern browsers support zooming in
on the content. They're able to make
pixel-based layouts smaller or bigger.

On the mobile phone, the rapport
between the pixel of the design and the
pixel of the screen has been cut entirely.
The webpage is initially displayed fully,
and subsequently the user can zoom,
continuously, in and out on the design.

Scalable user interfaces benefit from
vector graphics. After all, vector graphics
are supposed to shine in the world of
scalable.5 There's even a vector format
that was named after this inherent
property: Scalable Vector Graphics. But
does that mean we can’t use the model of
the bitmap in our new designs and
interfaces? Not necessarily.

When in doubt, look at your

predecessors. Most of our historic

design for the computer screen is

bitmap-based.

A city

Beatiful abstractions in Anthony’s icons



LIBRE GRAPH ICS MAGAZINE 1 .2
15

When in doubt, look at your
predecessors. Most of our historic design
for the computer screen is bitmap-based.
I like to look at early pixel-based guis for
inspiration. There’s a library of icons and
user interface elements for the X window
system, collected by Anthony Thyssen,
available online.6 Because of the
limitations inherent in early systems,
many of them are really simple, black
and white, 16x16 bitmaps. Through tight
constraints, they attain a very evocative
kind of abstraction. In this they resemble
Susan Kare’s icon designs for the original
Macintosh, which are much better
executed than current iterations.

SCHRIJVER

These designs don’t deserve to stay locked
to the grid of display pixels growing ever
tinier. They also don’t have to: you could
paint these designs with square meter
pixels on your wall, with even that
rendering making them look great.

But what better way to reinterpret these
designs than to convert them to vectors?

Traditional tracing algorithms do no
justice to these designs. Looking for the
curves underlying the designs ignores
that the pixel grid is constitutive of the
design. We are not looking for the
platonic ideal. In this case, there's
nothing to do but make vector pixels:

a vector square for every pixel! It doesn’t
even have to be a square. After all, a
bitmap is a collection of points, and
points have no predefined shapes. It
could be circles or any arbitrary shape.
You could make the pixels come together
in horizontal scanlines, or vertical ones.
You could distort the grid on which they
are based.

There are many possibilities in the future
of rendering and the further we go in
exploring them, the closer we come to
keeping alive the heritage of our pixels.

1 . Thanks to Joost Rekveld for his classes, introducing
these works amongst others

2. Form and Code, In Design Art and Architecture: Casey
Reas, Chandler McWil l iams, LUST; Princeton
Architectural Press 201 0

3. http://en.wikipedia.org/wiki/Pixel

4. http://webkit.org/blog/55/high-dpi-web-sites

5. Actual ly, there are quite some pixel based scal ing
algorithms too:
http://en.wikipedia.org/wiki/Pixel_art_scal ing_algorithms

6. My reissue avai lable at
https://github.com/codingisacopingstrategy/AIcons

Eric Schrijver (Amsterdam, 1984) is a
visual artist who makes installations and
performances. Eric teaches Design for
new media at the Royal Academy ofArt
in The Hague. He is inspired by open
source and programming culture.
http://ericschrijver.nl

Above: A calendar.

Left: A tornado (from Nethack).



LIBRE GRAPH ICS MAGAZINE 1 .2
16 SCHRIJVER

Want to make your own vector pixels? Follow these (relatively
easy) steps to generate your own vector pixel icons.

The following instructions should work just fine on either Linux
or Mac.

Grab the code: Either type it in by hand, copying the code [on
the right] or go to the assets sections of our website
(http://libregraphicsmag.com/assets) and download the
vector pixel pack we've prepared for you.

If you're copying out the code manually, enter it into a text
editor and call the file vectorpixel. py.

Find an image: If you're doing it on your own (instead of using
the assets we've provided), find a simple image. Make sure it has
very few colours (you're going to have to strip all the colour out
of it). Simple logos, warning signs and similar types of images
work well. Open it up in your favourite raster image editor (we
used gimp).

Strip out the colour by doing things like increasing the contrast
as much as possible and posterizing. You're aiming to have an
image with only black and white. While you're at it, resize the
image to a very small size. 50px by 50px works well.

Warning! We're serious about the small image size. If it's too
big, the resulting svg will be very, very big and may just crash
your image viewer.

Save your image (as something like a png, jpg or other basic
raster format). Make sure to flatten while you're at it. Layers
will only cause trouble in this case. Make sure you save it in the
same directory as your vectorpixel. py file.

Point the script: Take another look at vectorpixel. py. On the 8th
line, you'll find something that looks like this: SOURCEIMAGE =

' city. png' . If you've made an image of your own, you'll want to
change city. png to whatever the name of your file is. Then save
vectorpixel. py again. Now, when you run it, it'll be looking for
the right image.

Convert it: Open up your terminal (for more on using the
terminal, check out the detailed instructions and explanation on
pages 22-23). Navigate to the directory containing
vectorpixel. py and your image.

At the prompt, type: python vectorpixel. py > city. svg

If you've provided your own image, you can change that last bit.
For example, if your source file is called attention. png, you can
sub in attention. svg. All this does is set up a destination file.

Hit enter. It'll look a little like nothing has happened. However,
if you go and take a look in your folder, you'll find a new file,
called city. svg (or whatever you've named it). Take a look at it.
It should be made up of lots of little vector pixels.

You've just made a vector pixel icon!



LIBRE GRAPH ICS MAGAZINE 1 .2
17

#! /usr/bin/env python

""" Generates vectorpixels based on 2-bitmaps (2 color pictures) .

TODO: use element tree for XML; implement Floyd-Steinberg

dithering for color and greyscale images; implement vertical

and horiontal scanlines """

import Image

SOURCEIMAGE = ' city. tiff'

class vectorpixel:

def __init__(self, image) :

self. i = Image. open(image)

self. px = self. i . load()

self. constructed = False

def construct(self, grid=24, line=1 , rounded=4, test=(lambda x: x == 0) ) :

self. grid = grid

self. line = line

self. rounded = rounded

self. width = self. height = self. grid - 2 * self. line

self. test = test

self. fill = ' #000000'

self. constructed = True

def _yieldlocations(self) :

for x in range(self. i . size[0] ) :

for y in range(self. i . size[1 ] ) :

if self. test(self. px[x, y] ) :

yield (x, y)

def _mkelements(self) :

for l in self. _yieldlocations() :

yield "<rect x=' %s' y=' %s' width=' %s' height=' %s' rx=' %s' fill=' %s' />" % (

self. grid * l[0] + self. line, self. grid * l[1 ] + self. line, self. width, self. height, self. rounded, self. fill)

def _format(self) :

output = ' <svg xmlns="http: //www. w3. org/2000/svg" width="%s" height="%s">\n' % (self. i . size[0] * self. grid, self. i . size[1 ]

* self. grid)

for e in self. _mkelements() :

output += e

output += ' \n'

output += ' </svg>'

return output

def generate(self) :

if not self. constructed:

self. construct()

return self. _format()

if __name__ == "__main__":

v = vectorpixel(SOURCEIMAGE)

print v. generate()

SCHRIJVER



LIBRE GRAPH ICS MAGAZINE 1 .2
18

Coding pictures
Ricardo Lafuente

DISPATCHES

At the Fine Arts Faculty of Porto University, we built up an
introdutory class focusing on procedural strategies inside a
graphic design context. In less stuffy terms, the purpose was to
introduce design students to code. However, this required some
thought on what subjects to teach (and which to leave out),
which pitfalls to avoid, and which approach would work best to
introduce an alien, cold and logical subject such as programming
to creative people.

Designers are inevitably involved with computers, which are
present in most stages of a graphic designer's workflow, from
initial sketches to printing finished pieces. Yet there's a dearth of
formal education on the technical and social workings of
computers and digital media in general.

Nevertheless, attention has been paid to this field during the last
decade, which saw the birth and growth of creative-oriented
applications, spearheaded by its most popular example,
Processing. Among other creative coding tools, we find Pure Data,
Context Free, Drawbot, Nodebox, Shoebot, Supercollider and
Fluxus. The overwhelming majority of these tools are f/loss.

Learning to code is becoming more and more of an obvious
choice for designers. The rising popularity of the web has created
a huge demand for skilled coders, but designers are also a key
part of any serious venture. A designer who can implement his
own ideas, instead of just handing over mockups to a web
developer, ends up with a big advantage. Becoming acquainted
with digital logic, the workings of computers and their bells and
whistles is also a way to liberate oneself from being a software
operator, and be able to think for and with the machine.

TOOLS AND STRATEGIES

In our semester-long class, we focused solely on still, static
output, meaning that animation and interactivity were left out.
This gave room to explore the basic commands and features, as
well as combining them with creative strategies that the digital
medium enables, such as repetition and randomness.

Processing was considered as the application for this class, but
Nodebox/Shoebot were picked because they work natively with
vector graphics, which was a crucial factor when considering
that the created designs should be meant for print. The fact that
they're based on Python, whereas Processing is based on Java,
also played a part. Python is one of the most appropriate





LIBRE GRAPH ICS MAGAZINE 1 .2
20

languages for introducing people to programming, due to its clear,
readable syntax, which almost resembles the pseudocode used to
explain abstract programming concepts. It also hides away (or puts
sugar on) much of the complexity behind programming concepts,
allowing us to focus on properly wording our orders to the
computer.

Nodebox and Shoebot provide a sketchpad for writing small
Python scripts. When running them, the program will create
graphical output—an image. This instant visual feedback is a big
plus for teaching code to creative-minded people, since it allows
for swift tinkering and borrowing from the provided example
scripts, and was crucial in easing design students into the coder
way of thinking.

PRACTICAL EXAMPLE: CHARACTER GENERATOR

One major assignment in this class was to design an identicon
generator. Identicons are icons commonly used in blogs, especially
inside comment sections, which identify the commenter through a
graphical representation of their ip address. This is done by
combining different possible parts into one final image. Monsterid
andWavatar provide icons in the shape of quirky monsters,
whereas Identicon generates abstract, geometric shapes. The goal
of this assignment was to think up the design for an identicon,
freely choosing the subject, and create a program that could
generate different outputs randomly.

The size constraints of a blog icon are a big limitation, one that
wasn't forced on the students in order for them to focus on the
more relevant creative questions. Many of the students went
through the character-design route, though others attempted more
daring approaches, such as cake and bug identicons.

The challenge of this assignment was not the coding itself. Most
students were already rather comfortable with using randomness,
drawing with code and importing external images. The focus was
on creating consistent designs which could work with different
compositions and still end up as a complete final result, not giving
away the fact that it was generated by a program.

The illustrations running alongside this article are some of the
results of this assignment.

Image Credits:

Page 1 8: Fábio Santos; Edgar Sprecher; Joana Estrela.

Page 21 : Sofia Rocha e Si lva; Telmo Parreira; Lídia Malho.

Nodebox: http://nodebox.net

Shoebot: http://shoebot.net

Pure Data: http://puredata.info

Drawbot: http://drawbot.com

Context Free: http://contextfreeart.org

Fluxus: http://pawfal .org/fluxus

DISPATCHES





LIBRE GRAPH ICS MAGAZINE 1 .2
22

Setting a book with

Scribus
Pierre Marchand

FIRST TIME

I remember my own first time, the first serious one, was a
bookletization of a famous, amongst afficionados, little parody
by Pierre Louys under the title ofManuel de civilité pour les
petites filles à l'usage des maisons d'éducation. With its typical
late 19th century French style, it was natural to associate it to a
didone font. I ended up using the Didot shipped with the Mac
os i owned at this time.

Here is the crux of this story: at this point I hadn't yet read the
paper by René Ponot1 convincingly establishing that it was not a
good idea to use ligatures with the Didot typeface. I wanted to
use them! But in this instance of the typeface, the ligatures and
old numerals were outside the charmap, intended to be accessed
only by means ofOpenType substitution or glyph index.
That, in itself, was an adventure.

This time, though, was also my first time going deeply into font
technologies and Scribus code. Along my journey in these fields
I came to read Theotiste Lefevre. His amazing Guide pratique du
compositeur d'imprimerie helped me realize how much, even if
still non-trivial, the making of a book has become within
everyone's reach with desktop publishing and personal printers.
For now, forget Louys and Didot and go for a book in a minute!

The recipe is as follows. First be modest and grab some text
fallen into the public domain at gutenberg.org. If you attempt to
write your own material, you will definitely not be able to do a

No matter what operating system you're
using, you've got a command-line interface
at your disposal. If you're of a certain age,
you may remember fiddling around a little
with ms-dos. Even if you never did, don't
worry about it. The command line is
friendlier than you may think.

Now, because we're all designers here,
chances are good you're using a Mac. Or,
if you're like us, Linux. The tips and
commands listed below work just fine for
both. If you try them in ms-dos (under
Windows), your computer may explode.
We're not quite sure, really.

Open a terminal:
On a Mac: Crack open your Applications

folder and go to Utilities. There's a
program there called Terminal. Open it.

On Linux: Normally under your
Accessories or System menu, you'll find
something called Terminal. Open it.

Get to the right place:
If you've downloaded a book from
Project Gutenberg, hopefully as a plain
text file (something ending with .txt),
great. If not, go back and do that. But
make sure to take note ofwhere you've
saved it.

When you opened Terminal, it should
have started you up in your home
directory. To make it easier to find where

book in a minute. Next, run a bit of Perl magic powder onto it
like perl -n -e ' s/(\S) \r\n/\1 /ms; print $_; ' original. txt >

withoutlinebreak. txt to let Scribus do its work at line breaking.
(See below for more detailed instructions.)

Now you can create a new double-sided Scribus document with
a bunch of pages and automatic text frames turned on. Import
the text into the first text frame. Set the default paragraph style
to something that looks like a book, serif typeface at 10 points,
justified, etc. Et voilá!

Well, it isn't exactly ready to serve to your friends, but you get
enough of the taste of an actual book to open the door and start
to work. If you think not, click on the eye at the right bottom of
the Scribus window to turn on Preview mode.

While writing these few lines, I'm doing the same as I did years
ago and am still amazed by what Scribus brought to us — by
what it allows us to do and the opportunity it gives to learn
about desktop publishing. We have the opportunity to do
publishing work as Scribus exposes its internal representation of
graphic objects through an opened source code and file format.

1 . Le Didot a-t-i l besoin de l igatures ?

Cahiers Gutenberg no. 22 (1 995), p. 1 7-41

http://cahiers.gutenberg.eu.org/cg-bin/article/CG_1 995___22_1 7_0.pdf

you're going, open up your file browser
(Finder on a Mac, or on most kind of
Linux, just double click on the icon for
your home directory). Navigate to where
you put your file. Now, take a look at the
path leading up to that. For example, if
you left it in your Downloads directory,
chances are good that it'll only be one
directory past home.

Once you have an idea ofwhere you've
put your file, go back to the Terminal. To
change directories (because that's what
you're about to do, unless you've left the
file in your home directory), you're going
to use the cd command. It allows you to
(yes!) change directories. Let's say you've
left your file in the Downloads directory.

EXECUTING COMMANDS IN THE COMMAND LINE



LIBRE GRAPH ICS MAGAZINE 1 .2
23FIRST TIME

In your terminal, you'd type "cd
Downloads" (without the quotation
marks). That would take you to your
Downloads directory. If, in the
Downloads directory, you happened to
have another directory, this one called
books, for example, you'd then go "cd
books" (note that it's case sensitive).

Looking around:
Now, we're in our fictional
home/Downloads/books directory. Let's
take a look at what's there. To get a list of
the contents of a directory, just type "ls"
while you're in the directory you want to
look at. It'll turn up a list of all the files
and directories contained within that
directory. If you've gotten to the right

place, ls should show you the book
you've downloaded.

Running the script:
Now you can run the script mentioned in
the article. Just copy it and paste it into
your terminal. Or, if you're reading this
in print, type it. Heck, type it in
regardless, just for practice!

perl -n -e ' s/(\S) \r\n/\1 /ms; print

$_; ' original. txt >

withoutlinebreak. txt

Of course, you'll want to change
"original.txt" to reflect the actual file
name of the book you downloaded. Then,
hit Enter. If all goes well, the next time

you do an ls, you'll find a new file, called
"withoutlinebreak.txt" which will be the
book you downloaded, without
linebreaks and ready to be conveniently
typeset in Scribus.

While this may seem like a lot of
complicated steps, once you get used to
it, you'll find that it's easy, convenient
and fast. And it's just the beginning of
what you can do with the command line.

—the editors

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQWWWW#W#W#WBWWWWQWQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQW#ZXdZZZZUZZZZXZXZZZZ####BBWWWQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQW#XXXon2SXXXXXXSXXXXXZZZXXXZXXXXXXXXZXUUUWQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQWZS22nnn2wXndSnnX2onnnnnonoXXXXXXXXXXXXXSqQWWQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ#ZSn1 n1 oo2ono2nnd2onvnnoSlnoXo21 oX21 vnXXXmQWWQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQBXS21 vnnnoond1 nnoXvvnvvn1 ovuXn2nnd1 3uXXXXmQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQWX2n1 v1 vvvunn1 v1 noSvvnvv2v1 nXno1 vdnIuXXXe{| ilvYS??$QQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQWWWWWWWWWWQQQQQQQQQ@o2S1 v%ivvzvn1 1 vnuvvsvva1 IlX2uXuvXlnXXX2^; =| | ++-__ajQQQQQQQQ
QQQQQQQQQQQQQQQQQQmQ#mmmZX###ZZZZZZXX#H&oo2ll%ilIzivlIl1 zvl%viuszvd1 uei{2IdSXXr: : =>+<vXWQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQWQW8T! "- "??Y##ZXXXqqXXXonuuassil%%Ii%i%vi%islueli2oXXXS}. =+ . -: =<vmQQQQQQQ
QQQQQQQQQQQQQQW8VY*=-: . "??X#U#Z#mXwXoSopoouu%s{i%%i}IenuoXXXXSr=/` . - . : ) ?TTVHQWQQQQQQ
QQQQQQQQQQQQF-^^+_=: : -. " ! ! ZXZ#U#Y?! ! ?! "~ --+vno22S2SSe=/. : , +^` ---- --WQQQQQQ
QQQQQQQQQQQF . --: : : . . . +no22S2S| >_%iiiiiii | | | | | =+]WQQQQQ
QQQQQQQQQQP . . . . . . . . -- . . . . . . _; ====_. =vo2S2c%=vvv>~: . . . . : : . . : : ; 3QQQQQ
QQQQQQQQQP . . . . . . . . . . . -. : . . . . . . : : : ==+| +| iiiv%; +n222vinn>==| %i| | | | | | | +| ==$QQQQ
QQQQQQQQ@` . . . . . . . . . . . . . --. : : : : . . . . . . : : : : : : : ===+| +| | | iiiIs| ) n2e%vn+| Ivi | +| ==__; ====; -$@WQ
QQQQQQQ@` . . . . . . . . . . . . . . . . -: ; ; ; ; ; =: : : : ===++| | +| | | | ivllII>{o1 voi%Ili | | | | +==-=+=: - . ] Q
QQQQQQ@` . : : : . . . . . : . . . . . . . . . . . . . . . ---: : : : ; ==+| +| | | | | | lIvvvvvI%n1 o}%Ii| +| +| | | | +| | -- _mQ
QQQQQ@' . . . . : : : : -. . . . . . . . . . . . . : : : : ; ===| =| | +=i | i | iivvnlll{nniv>==---~--- _awWQQQ
QQQQF` . . . . . . . . : : : : . . . . . . . . . . . . . . : : : : ==+| ++| +| i | | +=| IIvvlilI| iIi= _saymWWWQQQQ
QP" -. . . . . . . . . . . . . . . . . . . . . . . . . . . ; : : : ======>+<| | =| =+| | iilIv+- - _awmWmWBWQWQWQQQ
QL . . . : . : . . . . . . . . . . : . . . . . . . . . . . : =; : ; ; ==| | +| +=| =+- . --| i>: _sammQWmWWWWWQWQQQQQQ
QQma, . -: : . --: . . . . . . . . --. . . . . . . . . . . ; =; : ; : +=| =++==| -~ : : _awmWWBWWWWWQWQQQQQQQQQQQ
QQQQQma. --. : . . . . . . . . . . . . . . . . . . . ; ; =; ===+=====: - <ayWQQWQQWQQQQQQQQQQQQQQQQQQQ
QQQQQQQQma, -. . . . . . . . . . . . . . . +===; : ; =: ; ; ; - . _awmQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQa, -. . . . . . . . ===; : : ; =: : . . _wwQQQWWQQQQQQQQQQQQQQQQQQQQQQQWQQQQQQ
QQQQQQQQQQQWQQQwa -. -. . ; : : : : - : _aamWQQWQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQWWWga. . -- . _wwmQWWWQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQWQQQQQQQQ
QQQQQQQQQQQQQQQQQQQWQma, . _awmWQWWWQWQQQQQQQQQQQQQQQQQQQQQQWQQQWQQQWQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQa, sayWWWBWQWQWQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQWWQQwc _aamQWBWWQWQQQQQQQQQQQQQQQQQQQWQQQQQQQQQQWQQQQQQQQQQQQQQQQQWQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQWWQga, _aayQQWWQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQWQQQQQQQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ





LIBRE GRAPH ICS MAGAZINE 1 .2
25

Best of SVG

Wayfinding andwarnings from
Wikimedia Commons

BEST OF SVG

Warning signs, street signs, all kinds of signs: they blend into
our environments, letting us know what we need to know with
minimal fuss. Rather, that's what they do when well designed.
When badly designed, they confuse and jar us.

This time around, Best of svg has collected some of the finest
examples of signageWikimedia Commons has to offer. From
warnings of lasers and potential explosions, to incredibly
pleasing no passing signs, there's a nice assortment on offer.

We've found that warning and traffic signs are one of the strong
points of the Wikimedia Commons collection of svg graphics.
Signs and heraldry. But that's a collection for another day. If
you don't yet know aboutWikimedia Commons, it's well worth
checking out. Not only do its graphics feature in the Wikipedia
articles we know and love, but it has a pretty nice collection of
other media, all under permissive licenses, for your appreciation
and re-use. Find it at commons.wikimedia.org.

—the editors

We atLibre Graphics magazine have a
thing for open standards.We like their
transparency and their interoperability. We
like that, with a well documented standard,
everyone has an equal chance to play nicely
together.

That's whywe like SVG so much. It's a well
developed, well supported standard brought
to us by theWorldWideWeb Consortium
(W3C). It's available for implementation by
anyone developing software. It shows up in
modern browsers, fine vectorgraphics
editors andany number ofotherplaces.

One thing that's missing, though, is you: the
designer, the artist, the illustrator. So put
down that .ai file and check outSVG.



LIBRE GRAPH ICS MAGAZINE 1 .2
26 DESKTOP



LIBRE GRAPH ICS MAGAZINE 1 .2
27

Desktop
Pierros Papadeas

DESKTOP

Desktop features clever hacks, workarounds
and customizations used by designers and
artists. We look at the way the best and
brightest ofour peers work.
This issue, Desktop features customizations
used by Pierros Papadeas, a Fedora
Ambassador andMaintainer ofthe Fedora
Design Suite Spin.

Transparent Windows
A common drawing problem is layering info from different
apps. gnome with Desktop Effects gives you the ability to make
a window transparent. It means being able to trace without
having to go back and forth, saving, exporting and importing.
This effect can also be achieved with other desktop
environments.

Expose Windows

It's gnome and Desktop Effects again. Just point your mouse at
the upper right corner and you get an “Expose” of all windows.
It allows you to easily change between windows and get a quick
view of the huge amount of awesomeness you're working on.

In this instalment ofDesktop, Pierros is using
Fedora Linux, GNOME desktop environment
with Desktop Effects, Inkscape and Alchemy.





LIBRE GRAPH ICS MAGAZINE 1 .2
29THE INTERVIEW

I nterview with Oxygen's Nuno Pinheiro
Manufactura Independente interviews Nuno Pinheiro

Nuno Pinheiro coordinates the Oxygen
project, initially a set oficons for KDE which
evolved into a design platform comprising
2000+ icons, wallpapers, sound effects and
window styles. He's employed as a UIdesigner
at Klarälvdalens Datakonsult AB.
Ana Carvalho and Ricardo Lafuente went to
ask him about project management, art
direction and the history ofOxygen.

Manufactura Independente: Tell us about Oxygen. What is it?
How is it related to the KDE project?

Nuno Pinheiro:Well, Oxygen is considered one of the pillars of
kde. It's a design platform.

Initially, it was created by three people—I wasn't one of
them—at this get-together called Appeal Meeting, which took
place right after the kde 3.4 release. Many important kde people
were present in order to discuss and decide where to go from
there. kde had reached a fairly mature state and it was
appropriate to find out which next steps to take.

Two people involved in the meeting were KennethWimer and
David Vignoni. David is the author of the Nuvola theme which
was, back then, one of the most popular alternative themes for
kde. Actually, it was the most used theme. At this meeting, we
decided to begin work on a new icon theme, which was to be
called Oxygen.

Ken and David then invited me to join the effort of building a
completely new icon theme. We had the sponsorship of Novell,
which was a nice and cool company back in the day. That's the
story behind the creation ofOxygen, which was set to become
the icon theme for the fourth version of kde. We started work
on the icons. Novell ended up changing their minds and left the
project. We carried on nevertheless.

As we progressed on Oxygen, it became clear that icons were a
single aspect of the user desktop experience. The desktop has
many things, and it became clear that the user interface (ui)

toolkit (or window decorations) was a significant part of the
experience. kde used Qt, which had its own window
decorations. We thought it was appropriate to do our own ui

theme. So I started work on that as a sub-project of Oxygen,
drawing many mock-ups using Inkscape. I made a full mock-up
of the theme, without any code underneath. Then, I approached
some developers and they ended up supporting my work. We
worked together and did some iterations until we got to the
current version.

Now, if you can make an icon theme and a ui theme, you can
also make a window theme. So we did that next. If you can
make a window theme, you can also make a sound theme. So I
talked to Nuno Póvoa, who made it. If you can make a sound
theme, you can also make a mouse pointer theme. If you make a
mouse pointer theme, you can also make wallpapers. If you can
make wallpapers, you can make websites. This way, Oxygen
ended up becoming a design platform. Everything in kde that is
design-related is taken care of inside Oxygen (except type).

In the meantime, while making Oxygen, we decided to adopt
the Freedesktop standard naming spec. Thanks to this icon
naming scheme, you can get a kde icon theme and use it within
gnome, and vice-versa. This means that Oxygen, though closely
connected to the kde project, can be used in many other
contexts—in fact, we encourage that other projects use Oxygen.
The license is free and the process is open. I get really happy
when Oxygen is used in other projects, other places and for
other purposes.

Going from this idea ofOxygen being the design hub for KDE,
there's a question we're interested in: what's the decision-
making process for aesthetic criteria? In the end, how does it
come together? Is it a top-down process, or can anyone propose
new directions? Is there any other kind ofcontrol?

It's bidirectional. Actually, I coordinate the project, and I'm the
guy who says “Okay, we're going that way” or “We're not going
that way.” I've got the role of drawing the line when it comes to
final design choices.

However, Oxygen is not a young project. There's quite some
years behind it. It's sported some different visual tendencies
through time, graphically and formally. Every two versions, we



LIBRE GRAPH ICS MAGAZINE 1 .2
30 THE INTERVIEW

try to slightly change the general concept and message of the
theme. This message is not defined by us, but rather by the
community. For instance, the message we're working on for 4.6
and 4.7 is about elegance, in its broadest definition. Code can be
elegant, user experience can be elegant. So, we took this
message and tried to convey it through the theme design,
aiming for an elegant experience: elegant wallpapers, elegant
sound pieces, and so on. This is the centerpiece of the
experience we want to pass on to the user—a global message
that Oxygen helps get across.

And this is the most complicated part inside a design project:
achieving consistency when we have several people with very
different styles and ideas contributing to the same project. It's
the challenge of creating a bundle that is smooth and
continuous, has an even pace, and speaks the same language.
Managing all of this is my task: talking to people and trying to
have their work flow into something that's consistent and
dynamic, something that goes along with the rest and, at the
same time, addresses the core message.

Regarding your tools ofchoice, we know you use Inkscape...

I do use Inkscape. I also work with Blender, Gimp, Krita,
scanner, pencil, pen and my imagination.

Have these been your tools all along?

When I started, my first tool was Sodipodi, the predecessor of
Inkscape. Inkscape is definitely my main design tool.

Have you ever approached the Inkscape developers to ask for a
specific feature?

To be honest, I'm not close to the Inkscape guys. On the other
hand, I do frequent exchanges with the Scribus people. We get
along rather well. I'm almost done with their icons! Scribus
requires a lot of icons, around three hundred.

Howmany icons are there in Oxygen?

Two thousand and something. It's the largest part of kde in
terms of file size—two hundred or so megabytes. As far as I
know, it's the world's most complete icon theme. I'm not aware
of any other theme with such an amount of icons. Tango had
almost as much, but we're bigger. To give you a point of
comparison, Apple only has around eighty base icons, and then
each application brings their own set.

Are there any style guidelines that you set out before starting
work on a new theme? Setting a formal style direction is a

mainstay of
traditional graphic
design, usually
through corporate
identity manuals or
interface guides. Our
question is, do you
follow this tendency,
or is the Oxygen style
defined through a less
formal, more organic
way?

It is organic. To be
blunt, I don't believe

in those things. I've read several identity and interface guideline
manuals, particularly icon style guides. I could get the style
guidelines forWindows Vista and create Mac icons following
them, and vice versa. This while strictly following their rules.

And you could end up with something consistent.

I could! Any designer worth his name can do that. It's very easy
for a designer to follow every single rule, and still end up with
something that doesn't fit. There's some intangible aspects, a
kind of feeling, which you can't turn into logical rules and
crystalise on guidelines. Having 42 bullet points that you have
to go through in order to achieve X is not something that works
in this case. I've heard many dissenting opinions, but I seriously
don't agree with this way of doing things. It's my personal
opinion. I've started writing basic icon guidelines to help
newcomers.

Oxygen could have better documentation, but it's more about
having good designers. Every time I have a designer asking for
the rules, I tell them to look at the icons. If, after analyzing the
icons from any theme, you still have doubts about their
graphical and aesthetic rules, you probably shouldn't be
working on this. Honestly, it's a language. If it's well written,
one should be able to clearly interpret and identify the meaning
just by reading it. Something along the lines of“Oh, they're
using references to this and that. And I think I get where they're
trying to go here.” If you need a manual for a language in order
to be able to write it, then something failed during the process,
I'd say.

Now, we might be basing this on a historical inaccuracy here,
but we're led to believe that KDE pioneered the glossy interface
look, with polished looks, clean lines and shiny surfaces. The
same approach that has now been made popular by Apple on its
recent user interfaces.

A good designer

should

incorporate the

engineer and the

artist, but most

of the time the

artist wins.





LIBRE GRAPH ICS MAGAZINE 1 .2
32

Yes—a great designer, Everaldo Coelho, is to blame for the
glossy style. He worked on this theme, Crystal, which is very
well known and heavily used on a number ofweb sites
worldwide. It was one of the first Free themes made by a
designer, with a rather high quality standard considering the
tools available at the time.

The Crystal theme was of very high quality, indeed. But it's the
result of what Everaldo is as a designer, a specific kind of
stubborn designer with a distinct style. It is glossy, playful,
colorful, fun. Its visual style eventually became associated with
kde.

Whatwe were trying to get at with the previous question was,
does the Oxygen team see themselves as trendsetters?Do you
think that you're creating a norm, a set ofunwritten rules of
taste thatwould motivate others?

Honestly, with Oxygen I'm aiming to influence my community
to get better. I think that there are much more interesting things
out there than Oxygen, and I'm not just talking about the
desktop. I think that there's incredibly interesting stuffmade for
the web—which by the way, I don't approve of as a platform,
we're sacrificing our future freedom by moving everything to
the cloud—but design-wise, there's very exciting things being
done for the web today. I try to translate some of those new

principles to the desktop, and in doing so try to influence design
perception inside the community.

Design is learned, an acquired taste. Just like enjoying wine, or
cooking in general. You might go your whole life just eating
french fries and burgers; one day, you try a fish course, and the
next day you come back. Maybe you'll go on to like fish. Then
you try a good wine, and you gradually become able to
appreciate wine. I try to influence the community to become
aware of these little things.

Icons are pieces created with the purpose ofbeing used and re-
used in different contexts. In the case ofOxygen this becomes
more evident because ofthe Free licensing you employ. Have you
ever been surprised by a particular use ofthe Oxygen icons?

Oh, many surprises. “A Bola” [a top-selling daily Portuguese
sports newspaper] used my icons. Any mention to the license or
even attribution is nowhere to be seen. I've stopped worrying
about licensing issues.

The license we use is the lgpl. It's not the perfect license for
icons. We could have used Creative Commons, but the most
permissive cc license is very similar to lgpl. With it, you only
have to make sure proper attribution is made; other than that,
the icons belong to whoever wants to use them.



LIBRE GRAPH ICS MAGAZINE 1 .2
33

went to the developers and presented a different solution that
could elegantly solve the problem. It is very important for the
designer to be aware of the technical limitations. However, it's
very important for the designer to not be aware of the technical
limitations.

That's why coordination is important. I like having designers in
the Oxygen project who work with absolute freedom, pure
artists. The kind of people who come to me with completely
nonsensical ideas and make me say “You're an idiot, this is
impossible.” But it's very important that they keep pushing me
in that direction so that I can go “This is impossible but hey,
maybe we can do half of it.” Then I go to the developer and he'll
say “This is impossible because of this, this and that,” and I can
suggest “But this and this could be done in this particular way,”
to which he'll reply “Maybe we can do half of it.” This way,
things progress according to the artist's vision and the
developer's understanding.

Code can be elegant, user

experience can be elegant.
In corporate settings, one can usually find a schism between
designers and developers or engineers. In Oxygen's case, does
this kind oftension occur?

Such tensions are nowhere to be found. I'm actually lucky—I'm
an engineer. I studied engineering. And I find this is one of the
reasons why Oxygen solved many of the issues that can plague
other open source projects. I can speak both languages.

I come from a specific background: I'm a civil engineer. Civil
engineering implies a crossover between architecture and
engineering. My sister is an architect, so I know the battlefield
well when it comes to the problems of both theorizing and
implementing. The person who theorizes—often the
designer—should be comfortable with implementation details,
but very often that's not the case. A good designer should
incorporate the engineer and the artist, but most of the time the
artist wins. I keep trying to make sure I'm in touch with both
perspectives.

There was a particular issue in Oxygen regarding the styling of
window shadows. Only someone well aware of design and
implementation issues could tackle the problem of how to
properly anti-alias window corners and make it look good. I
knew the implementation pitfalls, knew how the tech worked,







LIBRE GRAPH ICS MAGAZINE 1 .2
36



LIBRE GRAPH ICS MAGAZINE 1 .2
37

Papercut
Allison Moore

Papercut is a Blender-based video game in the style of
traditional side-scroller roleplaying games. There is a central
character and a landscape to traverse. You are a lumberjack. You
must cut down trees with a chainsaw. The game world is
designed combining hand drawn illustrations with cut-out
scanned textures.

There are two characters to choose from: a Lumber Man and a
Lumber Lady. The main character must deforest the landscape.
Your only tool is a chainsaw. As you cut down trees you collect
points. There is a time limit to each level, and if you meet your
tally, you advance to the next level.

Papercut creates a main character with a questionable morality.
In traditional gameplay, the main character is definitively good
whilst any character blocking the path is definitively bad.
Geographical obstacles, woodland creatures and hippies block
your path.

The virtual world combines exaggerated representations of the
existing world with elements interpreted from my imagination.

I played a lot of games in the 80s and early 90s, so I like
vintage/retro games and this is the aesthetic that influences me
most. It was hard to wrap my mind around a 3d world, so I
decided to make it 2 ½d. I use 2d references of vintage games
incorporated in the 3d landscape. The final result is like a paper
puppet set, my 2d characters like puppets navigating through a
diorama-style set built in 3d. Trees fall like leaves of paper.

http://www.looper.ca

SHOWCASE



LIBRE GRAPH ICS MAGAZINE 1 .2
38

What Revolution?

Antonio Roberts

What Revolution? is the first in a series of images challenging the
ideas of celebrity and idols. The 1960 photograph of Che Guevara
by Alberto Korda has been endlessly mutated, transformed, and
morphed. It can be found advertising anything from belts and "hip
and cool" t-shirts to health insurance. It is tacked onto political
movements without much consideration of the history behind it.
One has to ask if his image is still the symbol for change and
revolution that it was fifty years ago, when it was furiously
distributed throughout Europe by Jim Fitzpatrick in protest of the
conditions ofGuevera's murder.

The vector image of Che was glitched using a C script written by
Garry Bulmer. The script randomises the position and other values
of the nodes in the file. The background is a random image found
on the Internet tagged with "Revolution," which was then glitched
many times using ucnv's Glitchpng Ruby script. To get the sharp
colours, I reduced the image from 8 bits to 1 bit using
ImageMagick. All of the separate elements were then recomposed
in Inkscape.

http://www.hel locatfood.com

SHOWCASE









LIBRE GRAPH ICS MAGAZINE 1 .2
42

Everyone works differently, regardless of the task. Every artist
has an individual style for getting things done quickly,
efficiently, and in such a way that the effort required doesn't
ruin the inspiration driving the work in the first place. Whether
the motivation is a client or a personal passion, the process that
an artist uses to finish the job is generally known by the term
"workflow."

Even though everyone tends to be unique in the way they work,
much proprietary software enforces a very specific workflow. In
fact, deviation from that workflow is discouraged. The nature of
the business demands that a proprietary software vendor
ensures its product is all an artist needs. In other words,
proprietary software, in order to make the greatest sales, seeks
to be a monopoly.

Many artists take this for granted because those proprietary
software packages are what they learned in school or at work.
Some literally do not realize there is any other option. However,
on almost any platform there are a host of f/loss tools which
can enable artists to take control of how they want to work, and
what works best for them.

How do you know if your workflow needs refinement? There
are a few good indications:

—If you find yourself using applications to do things
that they (technically) can do but were clearly not
designed to do, you might find it far more efficient
to seek out the right tool for the right job.

A characteristic of Free/Libre Open Source Software
applications is that very few attempt to be everything to
everyone. In fact, a basic tenet of f/loss, handed down from
Unix, an historically easy operating system for which to create
custom applications, is that ofmodularity. This idea is
commonly expressed in the mantra "do one thing and do it well."

This means that f/loss tends to focus on individual tasks that
can then be strung together. Does this sound like the great
beginning of a formidable personalized workflow? It is.

Making your workflow

work for you
Seth Kenlon

Proprietary graphics applications lull users into believing they
can do everything, but in reality they do one general set of tasks
well and offer heavily pared-down tools for everything else. For
instance, a bitmap graphic manipulation software might offer
some basic page layout and vector drawing features. The theory,
presumably, is that if a user only needs a few basic vector
illustration or page layout tools, then those tools will be
available. In practise, however, artists become so familiar with
this monolithic application that they start using it for
everything, cobbling and hacking together entire pieces with
one wrong tool. While this does get work produced (a result that
is always difficult to argue with), it often does so after far too
much unnecessary pain, too many workarounds and speed
bumps.

F/LOSS software encourages people to use the tools that are
designed for the job. In so doing, the artist is freed to use
anything he wants to use. Whatever application an artist finds
easiest and most suitable for his art, he is free to use, from the
most complex vector drawing program to the most basic paint
program. Since f/loss is dedicated to interoperability, there
aren't as many format problems; the work done in one
application can be imported and modified in another. No
separate, fancy, confusing bridge application necessary.

In a way, this means an artist might need to learn more
applications. Most people find that while learning f/loss

applications, there is enough internal logic to that application
that the learning curve is modest. And certainly the fact that the
application is designed to do the task being done helps a lot.
There's no hacking around the fact that an application doesn't
do the normal things it should do.

—If you find yourself doing repetitious tasks by
hand, again and again throughout a project, then
there may be something designed to take that
burden from you.

This idea springs up in many different places within the f/loss
world. Since none of the code in f/loss applications is hidden,
scripting these applications is quite simple if you have even

FEATURE



LIBRE GRAPH ICS MAGAZINE 1 .2
43

modest scripting skills. However, some people have no scripting
skills and don't want them - and for them, there is the Internet.
Simple searches uncover myriad scripts to do repetitious tasks
with command line applications.

The Image Magick suite, for example, which itself consists of a
number of command line tools is one of
those applications that no graphic artist
should ever be without -- regardless of
preferred os.

Now, it often puzzles people to think of
graphic work being done from a command
line, but it is amazingly useful and flexible.
Graphic artists using propriety software
might spend an afternoon opening a graphic
in a big bulky graphics application just to convert its
colourspace. Artists using Image Magick, on the other hand, can
issue a simple line command:

bash$ convert file. tif -colorspace cmyk fileCMYK. tif

and have the job finished in moments. Script that and hundreds
of files can be done while you're onto the next task.

—If you find yourself consistently being stopped or
drastically slowed by the same set of small "quirky"
problems on every project you do, then you may
need a specialized tool to avert that issue.

Proprietary software typically has two answers to your
problems: don't do it, or spend more money to be able to do it.
This might apply to a specific file format you want to use, or an
effect you want to achieve, or a way ofworking.

The f/loss world is set up differently, because there's no agenda
to up-sell you on improved versions of the software and no need
to limit what you can do. New tools are being developed every
day to meet the demands of artists, and these tools are all free to

download and use. All Free/Libre Open Source Software, by the
very nature of having free source code, is extensible and
expandable. As new tools are released, they can be integrated
into the applications you use.

DESIGNING F/LOSS WORKFLOWS

Whether or not you have an existing
workflow based on proprietary software,
working on f/loss for multimedia is most
efficient with a little planning. Without
stepping back and looking at the whole
project, it's quite likely that you'll reach a
critical point and realize you're not prepared

for the next step - or even aware ofwhat your next step should
be.

The first step in designing your workflow is to identify what
raw materials you'll need for production. If you're doing a
digital painting, you might want to go out and find brushes and
establish a custom color palette. If your work is graphic
manipulation, then you might want to find useful textures,
patterns, brushes, fonts, stock images, and so on. If your work is
a magazine then you'll need articles, images, and fonts.

Having this kind of kit before starting will make the project
flow more smoothly during the creation phase. Some
proprietary software comes pre-packaged with gigabytes and
gigabytes of royalty-free stock content which, among other
things, takes up quite a bit of room on your hard drive, mostly
will never be used by you, and is stylistically quite identifiable
as the corporate, royalty-free stock content that it is. f/loss does
not ship with this, so you'll have to find your own, but with
Creative Commons being the force that it is, this is a trivial
matter and one that, in the end, produces a more unique work
than the alternative.

A good place to start is the so-called "Great Multimedia Sprint"
from http://slackermedia.info/sprints. This is a nearly 2gb

Do one thing and

do it wel l .

FEATURE



LIBRE GRAPH ICS MAGAZINE 1 .2
44

collection of Creative Commons licensed content meant to be
used as raw materials. More sprints are scheduled for the future,
so more content will be available soon.

The next step is to determine what software tasks and
compatibility your project requires. If you're working on a
magazine, for instance, then you're sure to need both bitmap
and vector manipulation programs, a host of fonts and some
way to organize and track them, as well as a good layout
program. If you're not already familiar with the tools that
f/loss has to offer for these tasks, investigate and try some of
them to determine which one you prefer and which one will
actually do the tasks you want to accomplish.

Since you'll potentially be able to break up tasks into smaller
applications, you might also want to consider how multiple
computers might be put to work for your project. In the studio
where I work, an old g4 running Debian Linux has been re-
purposed with the solitary job of converting music files from
one format to another while a g5 converts still frames to video.
They aren't the fastest computers, they don't have so much as a
monitor connected to them, but they can run these dedicated
tasks all day and all night, so that the materials are available
when needed.

In the end you should be able to trace in a flow-chart how the
work will get done. A graphic might first be converted and
scaled with one application, manipulated and customized in
another, and laid out in the final work in yet another. Exporting
should, as often as possible, be done at maximum quality to
result in a "gold master," which can then be modified and
compressed into easily-distributed versions. Again, this can
easily be done with dedicated line commands that specialize in
compressing (Image Magick for graphics including pdfs, pdftk
for pdf modification, ffmpeg for video, and so on).

THE WAY FREEDOM WORKS

The bottom line is that the workflow in f/loss is not pre-
determined for the artist. While this places the burden of
designing a workflow upon the artist, it also frees the artist
from a locked-down, inefficent art creation process, and opens a
world of possibilities and creativity. And that's something worth
working for.

FEATURE

Proprietary software

typical ly has two answers

to your problems: don't do

it, or spend more money to

be able to do it. This might

apply to a specific fi le

format you want to use, or

an effect you want to

achieve, or a way of

working.



LIBRE GRAPH ICS MAGAZINE 1 .2
45

As an artist or designer (or both), you use
a range of tools in your everyday work.
Even though it's not something you think
about, you may be contributing to the
growth of these tools without realising.
Every time an application crashes and
you hit the button, giving permission for
it to report, you're contributing a little
something. But, if you're interested,
there's more. And there's more you can
get out of it than just reliable software.

Let's assume that you think of yourself
exclusively as a user of design tools. In
the same way you don't offer suggestions
to the company manufacturing your
pencils, you don't consider letting the
people making your software know what
you think.

And you know what? You're not alone.
Not many designers let the people behind
their favourite tools know what they
think. It's not common for designers and
artists to make their voices heard, but it
is useful.

Because, you see, it works this way: if
you use f/loss graphics software,
standards and methods in your art or
design practice, chances are good you
have something interesting to talk to
developers about. What you have to talk
to them about is the way you use their
software. And they want to hear it.

On being a Unicorn:
the case for user-involvement in

Free/Libre Open Source Software

LIBRE GRAPHICS MEETING SPECIAL

They want the gory details about which
specific tools and commands you use,
what problems you have, why you use
the things you use in your workflow.

There are lots of different opportunities
to have these conversations. The one
we're going to suggest right now is Libre
Graphics Meeting, an annual meet-up of
developers and users. The one thing tying
everyone together is an interest in f/loss

graphics. We want to let you know, as a
little service to you, the designer or artist
using extensively or even just dabbling
with f/loss graphics software, standards
and tools, that it's coming up.

We want to let you know because, as a
designer or artist using f/loss, you're a
bit of a unicorn. By which we mean that
you're something kind of rare and
beautiful, not often seen by f/loss

developers, and perhaps even
misunderstood. And as something a little
out of the ordinary, you're interesting.
You've got lots to contribute, so consider
joining in with the spirit of the
community a little and bringing your
own expertise to the table.

The sixth annual Libre Graphics Meeting is taking place

May 1 0-1 3 201 1 in Montreal . More information is avai lable

at l ibregraphicsmeeting.org



LIBRE GRAPH ICS MAGAZINE 1 .2
46

Let's talk about tools for a moment. We, as humans, distinguish ourselves from
other animals by talking about our ability to make and use tools. We make tools,
we use tools, we are tools, all at different times and in different amounts.

Tools can be physical things used to manipulate equally physical things. At the
same time, they can be digital things, used to shift bits. We can love them or
hate them. The one thing we can't manage is to escape them.

As we define what they do, so too do they define what we do. In the shape of a
paint brush, the kink of a bezier curve, the change a gaussian filter exerts over
an image, they make our work what it is. We are our tools and our tools are us.
So let's talk about tools, in the best way we know how, graphically.

Libre Graphics Meeting, Libre Graphics magazine and Mardigrafe are co-
sponsoring a juried exhibition of f/loss graphics work on the subject of tools.
Break out your own f/loss graphics tools and design a poster (24”x34”) detailing
your perception or ideas about tools.

All submissions will be included in an online gallery, presented in conjunction
with Libre Graphics meeting. In addition, a jury of designers, thinkers and doers
will meet in May. They'll pick 15 posters to be printed by Mardigrafe and
displayed during Libre Graphics Meeting in Montreal. The editors of Libre
Graphics magazine will pick a further eight to be featured in the showcase
section of an upcoming issue.

So get thinking about your tools, what they mean to you and what you mean to
them. Then, get designing.

More details and how to submit at http://libregraphicsmag.com/tools

Talking about our tools
Cal l for submissions

LIBRE GRAPHICS MEETING SPECIAL



LIBRE GRAPH ICS MAGAZINE 1 .2
47



LIBRE GRAPH ICS MAGAZINE 1 .2
48



LIBRE GRAPH ICS MAGAZINE 1 .2
49

In 2007, Michael Terry and other members of the University of
Waterloo hci lab set out to learn just what gimp users actually
do. To achieve that lofty goal, they created something called
ingimp, a variation of gimp which tracked feature use. Four
years later, they have an answer, in a way.

The answer, broadly, is what you might expect. It turns out that
different users of gimp do different things. Ben Lafreniere, a
doctoral candidate in Terry's hci lab, has combed through the
data and come up with a more nuanced answer. Usage tends to
be focused on small sets of tools, using only a tiny percentage of
the actual capabilities of the program. The members of the lab
refer to these groups as "corners."

According to Lafreniere, "not only do people use just a small
corner of the functionality in the system, but they tend to use
fairly distinct corners." Which means that there's no one-size-
fits-all answer. With different users making use of small, distinct
sets of tools, no one easy interface tweak will suit everyone and
make gimp universally more usable.

But never fear. There's another, far more exciting option. That
option comes in the form ofAdaptableGimp. The premise of
AdaptableGimp, another project from the hci lab, is that not
only should users be able to customise the interface of their
software, they should be able to share those customisations with
others. Or, as Lafreniere puts it, crowdsourcing "the creation of
customisations to the entire user community."

To do this, AdaptableGimp relies on a modified version of
MediaWiki. Task sets—customised collections of gimp
commands tailored to a specific use—are stored in a central
repository, tied to wiki pages which are capable of both
describing and controlling the mix of features in each set.

AdaptableGIMP:

user interfaces for users
ginger coons

" It's l ike an infin ite set of

overlapping M icrosoft

ribbons. They try to do

the same thing, they're

trying to group

functional ity. But we're

saying that it doesn't

need to be the six that

are defined by the people

making the appl ication,

there can be a mi l l ion. You

can't only have the

paintbrush in one. The

paintbrush can be in

500,000 of them. "—Fi l ip

Krynicki

FEATURE



LIBRE GRAPH ICS MAGAZINE 1 .2
50

"What we're grafting onto

the existing interface

paradigm, is this task-

centric view of computing

where you say 'This is what

I want to do' and the

interface modifies itself to

accomodate that

particular task. "—M ichael

Terry

The beauty of this, according to Lefreniere, is that “when
anybody creates a customisation to the interface, it's
immediately there, available to all the users of the application.”
This provides all users with a collection of available task sets,
just waiting to be used. Says Lafreniere, the intention is that a
user “can sit down at the interface, type a few keywords
describing what they want, searching things made by the
community, select one, and then immediately have it.”

And who will build those task sets? According to Terry, there's
already tangible evidence that some users are more than willing
to create documentation, tutorials and other resources. “What
we're doing,” he says, “is bringing that practice more directly
into the interface.”

This community approach to building and documenting task
sets has an added benefit: it makes the efforts of one person
useful and valuable to all other users of the software. This
means that different types of users can work to their own
strengths and preferences, while benefiting from the preferences
of others.



LIBRE GRAPH ICS MAGAZINE 1 .2
51

“People are hesitant to stop the current task that they're
working on to create a customisation” says Lafreniere. To Filip
Krynicki, one of the hci Lab's co-op students, this is one of the
major benefits of the AdaptableGimp approach. According to
Krynicki, “in most interfaces where someone can make a
customisation,that's where it stops.” But in the case of
AdaptableGimp, if even one percent of users actually create
customisations, all users benefit.

Users creating customisations may see some added incentive,
too. Terry suggests that, given AdaptableGimp's ability to collect
usage data, task sets could well come along with information
about how many users they've been installed by, how active
their development is and even how recently they've been used.
To Terry, this gives creators of task sets “some sense of feedback
of the utility of the task set.”

A NEW APPROACH TO INTERFACE DESIGN

Members of the hci Lab see current interface design as
something hierarchical and designed more to contain
functionality than to help users accomplish their tasks.

According to Terry, one of the goals of AdaptableGimp is to help
users define their own workflows. This approach contrasts
strongly with hierarchical interfaces, which he says are
“designed in reaction to the large number of commands that are
available and not designed around how people actually sit down
and want to use the tool for a particular task.”

This does not mean changing the entire functioning of the
program or reinventing the wheel. To Terry, it's a case of
“grafting onto the existing interface paradigm,” adding in a
“task-centric view of computing where you say ‘This is what I
want to do' and the interface modifies itself to accomodate that
particular task.”

Krynicki puts it into contrast with existing tactics: “It's like an
infinite set of overlapping Microsoft ribbons. They try to do the
same thing, they're trying to group functionality. But we're
saying that it doesn't need to be the six that are defined by the
people making the application, there can be a million. You can't
only have the paintbrush in one. The paintbrush can be in
500,000 of them.”



LIBRE GRAPH ICS MAGAZINE 1 .2
52

The future of AdaptableGimp looks, at very least, exciting.
Lafreniere suggests the possibilities presented by a built-in
recommendation system, offering complementary task sets
based on use patterns or even suggesting task sets which frame
commands the user already knows, but to different ends. As
Lafreniere puts it, “you know all these commands, you could do
this task.”

Of course, it's not just gimp standing to benefit from this work.
Terry hopes to offer a core set of AdaptableGimp components
which would help developers of other software in implementing
crowdsourced customisation themselves. Says Terry, “we hope
that we can provide a tool set for them that they can plug in and
start to use in their own application.”

AdaptableGimp is available now, for users who don't mind
compiling from source. Get it at http://adaptablegimp.org.



LIBRE GRAPH ICS MAGAZINE 1 .2
53

Resource l ist 1 .2

BLENDER
A powerful f/loss 3d animation
application for gnu/Linux, Mac os x and
Microsoft Windows.

GIMP
A raster based image editor for
gnu/Linux, Mac os x and Microsoft
Windows.

RESOURCES



LIBRE GRAPH ICS MAGAZINE 1 .2
54

IMAGEMAGICK

A raster image editing, creation and
conversion suite for gnu/Linux, Mac os x,
Microsoft Windows and iPhone, among
others.

I NKSCAPE
A vector graphics editor for gnu/Linux,
Mac os x and Microsoft Windows.

# Create a montage from a folder containing various png images

montage -geometry 400x300+0+0 *. png icon-montage. png

# Scale all jpeg images in a folder to a width of 640px

for img in *. jpg ; do convert $img -scale 640 $img; done;

# Rotate a batch of jpeg images 90º and convert them to png

for img in *. jpg ; do convert $img -rotate 90 ${img/jpg/png} ; done

RESOURCES



LIBRE GRAPH ICS MAGAZINE 1 .2
55

KDENLIVE

A video editor for gnu/Linux, Mac os x,
Microsoft Windows and Freebsd.

MYPAINT
Graphics application focused on natural
media simulation. Available for
gnu/Linux, Mac os x and Microsoft
Windows.

RESOURCES



LIBRE GRAPH ICS MAGAZINE 1 .2
56

SCRIBUS

A desktop publishing program for
gnu/Linux, Mac os x and Microsoft
Windows.

WEB FONT DOWNLOADER
An extension for Firefox, allowing
downloads of embedded web fonts.

RESOURCES



LIBRE GRAPH ICS MAGAZINE 1 .2
57

Glossary 1 .2

Alchemy:
A f/loss canvas drawing program, meant
to encourage play and exploration.
Available for gnu/Linux, Mac os x and
Windows.

Audacity:
A f/loss sound editing application for
gnu/Linux, Mac os x and Microsoft
Windows.

Blender:
A powerful 3d animation application for
gnu/Linux, Mac os x and Microsoft
Windows.

command line:
A text-based interface for controlling a
computer.

desktop environment:
A collection of tools and interface
elements which style the visual and
functional aspects of an operating system
in a certain way.

Digital Rights
Management (DRM):
Technologies (of whatever sort) which
prevent users from making certain uses
of the larger technologies to which the
dmr is applied.

distro/distribution:
A specific configuration of gnu/Linux,
often designed with a particular purpose
in mind.

Fedora:
A popular distribution of gnu/Linux,
produced by Red Hat, Inc.

flavour:
Similar in meaning to distro/distribution,
but more general. Simply means a
specific version (normally of gnu/Linux).

Free:
As in freedom, or often, that which is or
is of Free Software.

Free Culture:
A general term for activities and artistic
works which fall under a similar
ideological banner to the Free Software
movement.

freedesktop.org:
A f/loss project which focuses on
creating interoperable tools for
gnu/Linux and other Unix-type systems.

Free/Libre Open Source
Software (F/LOSS):
Software which has a viewable,
modifiable source and a permissive
license (such as the gnu gpl). It can be
modified and redistributed.

GIMP:
A raster based image editor for
gnu/Linux, Mac os x and Microsoft
Windows.

Git:
A popular version control system,
originally created to manage
development of the Linux kernel.

GNOME:
A popular desktop environment for
gnu/Linux.

GNU General Public
License (GPL):
A license originally intended for use with
software, but now used for other
applications. Made famous the principle
of Copyleft, requiring those using gpl

licensed work to license derivatives
similarly.

GLOSSARY



LIBRE GRAPH ICS MAGAZINE 1 .2
58

implement:
The act of integrating a feature or
standard into a piece of software,
rendering that software able to (for
example) perform a task or use a specific
file format.

Internet Relay Chat (IRC):
A popular form of internet-based real-
time chat. Has a long history of use and
is still popular among groups of
developers and users.

KDE:
A community project which produces
various f/loss applications, best known
as a popular desktop environment for
gnu/Linux.

Libre:
A less ambiguous adaptation of the word
Free. Implies liberty of use, modification
and distribution.

mailing list:
An email-based forum through which
subscribers may receive announcements,
view or participate in discussion.

open standards:
A standard which is available for
viewing and implementation by any
party, often at no monetary cost.

Oxygen:
A project meant to develop a coherent
and attractive visual identity for kde.

proprietary:
A piece of software or other work which
does not make available its source, which
is not allowed or intended to be modified
or redistributed without permission.

Scalable Vector
Graphics (SVG):
An open standard for vector graphics,
developed by the W3C.

SIL Open Font
License (OFL):
A license intended for use with fonts and
font related software. Dictates terms
which allow modification and
redistribution of fonts.

source code:
The human readable code on which
software is based. Software distributed
with its source code can be modified far
more easily than software distributed
without.

terminal:
A program which allows users to
perform actions on the command line.

Ubuntu:
A particularly popular distribution of
gnu/Linux, produced by Canonical Ltd.

version control:
Activities which have the effect or intent
of distinguishing different versions of a
work or body ofwork from one another.

Version Control
System (VCS):
An application/collection of tools
designed to facilitate version control.
Tracks changes to files and allows a
group of collaborators to share their
changes as they are made.

W3C:
The organization responsible for setting
web standards, such as html5 and svg.

GLOSSARY



LIBRE GRAPH ICS MAGAZINE 1 .2
59



LIBRE GRAPH ICS MAGAZINE 1 .2
60

Libre Graphics Magazine 1.2

February 2011

ISSN: 1925-1416


